N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells.
نویسندگان
چکیده
The molecular mechanisms underlying the contact behavior of Schwann cells (SCs) and SC-axon association are poorly understood. SC-SC and SC-axon interactions were studied using purified adult rat SCs and cocultures of SCs with embryonic dorsal root ganglion neurons. After contact of SCs with axons, SCs start to extend processes in alignment with axons. This unique alignment was quantitated using a new assay. SC-axon alignment and SC-SC band formation were disrupted in medium containing low extracellular calcium, indicating the involvement of calcium-dependent adhesion molecules. N-cadherin expression was strong in developing rat sciatic nerves but weak in adult sciatic nerves. In purified adult-derived rat SCs, N-cadherin expression was increased by mitogens (neuregulins) and decreased by high cell density. High-resolution confocal images show intense N-cadherin signals in SC process tips. Subcellular N-cadherin was accumulated in bands at intercellular junctions between SCs and was clustered at axon-SC contact sites. Blocking antibodies (rabbit and guinea pig IgG directed against the first extracellular domain of N-cadherin) and cyclic pentapeptides (including the HAV motif) were used to perturb N-cadherin function. All blocking agents reduced the number of N-cadherin-positive SC-SC junctions and perturbed axon-aligned growth of SC processes. Averaging over all N-cadherin-perturbation experiments, in controls 67-86% of SCs exhibited axon-aligned process growth, whereas in treated cultures only 41% of the SCs aligned with axons. These results are evidence that in mammals N-cadherin is important for formation of SC-SC junctions and SC process growth in alignment with axons.
منابع مشابه
Role of N-cadherin in Schwann cell precursors of growing nerves.
In the present paper, we determine the localization and developmental regulation of N-cadherin in embryonic rat nerves and examine the role of N-cadherin in this system. We also identify a major transition in the architecture of embryonic nerves and relating it to N-cadherin expression. We find that in early embryonic nerves, N-cadherin is primarily expressed in Schwann cell precursors. Pronoun...
متن کاملApoptosis of Rat Adipose-Derived Stem Cells during Transdifferentiation to Schwann-Like Cell
Background: Adipose-derived stem cells (ADSCs) are a population of pluripotent cells used for tissue engineering purposes. The main purpose of the present study was to transdifferentiate the ADSCs to Schwann-like cells and to determine the intensity of apoptosis in ADSCs during the transdifferentiation process. Methods: ADSCs were isolated from the inguinal adipose tissue of adult rats and the ...
متن کاملComparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells
Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...
متن کاملIdentification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro
Schwann cells have a unique role in regulating the growth of axons during regeneration and presumably during development. Here we show that Schwann cells are the best substrate yet identified for promoting process growth in vitro by peripheral motor neurons. To determine the molecular interactions responsible for Schwann cell regulation of axon growth, we have examined the effects of specific a...
متن کاملMesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2002